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ABSTRACT

The quantity of information has been growing exponentially, and the
form and mix of information have been shifting into the image and video
areas. However, neither the storage media nor the available bandwidth can
accommodate the vastly expanding requirements for image information. A
24-bit color picture measuring 8.5 in. by 11 in. at 300 dots per inch will
generate 25 Mbytes of data. Just 40 of these images will fill up a 1-Gbyte hard
disk. Storage is not the only problem here; such huge files can take a long
time to load into a program or save onto a disk. Moving this amount of
information over a network or a broadcast channel is an enormous task.
Transmission of these images over commonly used transmission channels
will be extremely costly, especially for video, because of the large amount of
data involved. Even with further network advances, it is expected that
growing needs will outstrip the expected increase in bandwidth, and thus
information congestion is still expected.

A vital, enabling technology here is compression/decompression. The
expected payoffs are in the storage and transmission of information; they will
affect projects ranging from automatic target recognition, such as the U.S.
Army’s Takeall system, to visualization of scientific and engineering data,
such as those derived from Advanced Design and Production Technology
(ADaPT), the National Ignition Facility (NIF), and the Accelerated Strategic
Computing Initiative (ASCI).

Our compression work is based on a combination of feature-based
algorithms inspired by the human visual-perception system (HVS), and some
transform-based algorithms, (such as our enhanced discrete cosine
transforms, wavelet transforms,) vector quantization, and neural networks.
All our work was done on desktop workstations using the C++ programming
language and commercially available software.

During FY 1996, we explored and implemented an enhanced feature-based
algorithms, vector quantization, and neural-network-based compression
technologies. For example, we improved the feature compression for our
feature-based algorithms by a factor of two to ten, a substantial improvement.
We also found some promising results when using neural networks and
applying them to some video sequences. In addition, we also investigated



objective measures to characterize compression results, because traditional
means such as the peak signal-to-noise ratio (PSNR) are not adequate to fully
characterize the results, since such measures do not take into account the
details of human visual perception.

We have successfully used our one-year LDRD funding as seed money to
explore new research ideas and concepts, the results of this work have led us
to obtain external funding from the DoD. At this point, we are seeking
matching funds from DOE to match the DoD funding so that we can bring
such technologies into fruition.

INTRODUCTION

Information has been growing exponentially, and the form and mix of
information has been shifting into the image and video areas. But neither the
storage media nor the available bandwidth can accommodate the vastly
expanding image information requirements. A 24-bit color picture measuring
8.5" by 11" at 300 dots per inch will generate 25 megabytes of data. Just forty of
these images will fill up a 1-gigabyte hard disk, a storage capacity that is a
minimal for scientific and engineering computation but exceeds most of
those used in home and corporate computers. Storage is not the only problem
here; such huge files can take a long time to load into a program or save into
a disk. Moving this amount of information over a network or sending it
through a broadcast channel is an enormous task. Transmission of these
images over commonly-used transmission channels will be extremely costly,
especially for video, because of the large amount of data involved. Even with
future network advances, it is expected that growing needs will outstrip the
expected increase in bandwidth, thus creating information congestion; the
recent breakdowns in America Online's system may only be the beginning. A
vital enabling technology is compression/decompression. As an example of a
very common bandwidth limitation, let us consider a modem connection.
The current maximum bandwidth of analog modems for telephone lines is
28.8 kilobaud (28,800 bits/s); a value greater than what many users now have.
At this data rate, it takes 4 minutes to transfer just one uncompressed
relatively low resolution 640*480 24-bit-color image! However if the image
was compressed 100:1, the transmission time goes down to a tiny 2.6 seconds.
This narrowness of bandwidth is one of the major barriers in the
digitalization of the battlefield and other such DoD imaging problems. The
expected payoffs are for both the storage and transmission of information,
impacting projects ranging from automatic target recognition, such as the U.S.
Army's Takeall system, to scientific and engineering data visualization such
as those derived from the Advanced Design and Production Technology
(ADaPT), the National Ignition Facility (NIF), and the Accelerated Strategic
Computing Initiative (ASCI) programs.




ALGORITHM DEVELOPMENT and RESULTS

Feature Representation, Vector Quantization and Huffman Coding
Algorithms

The reason for developing these algorithms is that we need to focus on the
importance of features which our human visual system seems to emphasize.
Also, finding features is extremely important for pattern recognition such as
in the case of target recognition and identification. In addition to finding
features, we also need highly efficient algorithms to represent these features
with a minimum number of bytes in order to yield a high compression ratio.

The finding of features was done with the help of filters applied to all
color planes. This was done so as to make the maximum possible use of the
available information in finding features. The result of this step is a set of
feature values. From these feature values, we then attempt to group them
together to efficiently represent the features of an image.

For vector quantization, our implemented technique is based on an
unbalanced binary tree of values; the purpose of doing so is to reduce the time
necessary to find the closest member of that table from the table's size to the
logarithm of that size. In addition, the construction of this binary tree could
be cut off if the fit errors were sufficiently low, thus improving compression
efficiency as well as speed. This resulting quantization may then be
compressed by Huffman coding.

Huffman coding is a well-known and highly-efficient technique for
context-less symbols; this was used for further compression of the features.
Though arithmetic coding is probably more efficient, it is protected by certain
IBM patents. The information was encoded differentially; what was encoded
was the difference from the previous value, since fewer bits are needed to
specify a small number of symbols than a large one, as is the case here. In
practice, however, only the signs and the exponents were Huffman-coded; the
fractional parts were inserted unchanged directly into the coded data stream.
This keeps down the size of the "Huffman table" of information necessary for
setting up for doing Huffman decoding.

So far, we have tested the effectiveness of these algorithms in comparison
with our old methods using simple representations of features such as lines
and circles since all features essentially can be distilled into these basic and
fundamental features. Figures 1 shows simple circles in grayscale; Figure 2
shows simple lines in grayscale, and finally Figure 3 represents a double color
spiral. Table 1 shows that the improvement in feature compression efficiency
can be substantial, ranging from 2 to about 10 times.



Figure 1 - "Circles" from the University of Waterloo Bragzone web-site

Figure 2 - "Crosses" from the University of Waterloo Bragzone web-site
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Figure 3 - Pair of logarithmic color spirals

Table 1: Improvement based on the New Algorithms

Circles Crosses | Log Spirals
# Pixels 65536 65536 262144
# Compress Bytes (Old method) 1000 2727 19296
# Bits/Pixel 0.122 0.333 0.589
# Compress Bytes (New Algorithms) 454 279 3215
# Bits/Pixel 0.055 0.034 0.098
Improvement 2.20 9.77 6.00

As these new algorithms are targeted for compressing high-resolution
images, they are not appropriate for low-resolution ones where the number
of pixels within each image is small and every single pixel is important; thus
we attempt to compress this class of images with totally different techniques.
This class of image is common for a very important application — IR images
— which tend to have much lower resolutions than the more typical sort of
images. Of the different approaches we have explored, a neural-network-
based technique seems to be promising at this stage.

Obijective Picture Quality Metrics
Since for many applications, a human being is either the ultimate receiver

of the compressed/decompressed images and videos or is involved in the
image evaluation and distribution processes, subjective evaluation is



therefore a very important measure of the results of
compression/decompression. This is important because traditional objective
measures such as peak signal-to-noise ratio (PSNR) are inadequate to fully
characterize the results, especially since measures like this one do not take
into account human-perception features.

However, subjective measurement suffers from experimental difficulties
and inaccuracies. It is prone to personal biases and ambiguities, which may
vary with the subjects and the test conditions. In addition, it is time-
consuming, inconvenient, and potentially very costly. Using subjective
measurements to evaluate the results of different settings of the same
compression process or algorithm to optimize its settings can be difficult for
the above reasons. Similarly, it is hard to compare the results of one
compression algorithm against another to determine which one is superior.
Traditional objective measurements such as the PSNR can only provide
rough guidance, because one can easily show that an image compressed with
a higher PSNR can appear to be inferior in subjective judgment when
compared with the same image compressed with a lower PSNR with some
different technique or parameter set. Furthermore, a single number simply
cannot be used to fully characterize the entire image, since an image is
subjected to many different aspects of human evaluation.

Though the establishment of objective measures in the compression
community is still in its infancy and thus at this point these measures cannot
replace subjective evaluation, they do, however, provide another perspective
to quantify the compressed/decompressed results. We have decided on eight
different objective picture-quality metrics ranging from descriptions based on
random errors to structural errors; from statistical to biological
considerations, and from global to algorithm-specific errors. Some of these
metrics take into account the human visual perception. These eight metrics
include the CCITT formula for image error, the Weber-Fechner weighted
measure, errors at the block boundaries, locally-correlated errors, errors near
edges, variances of the different images, errors pooled from channels
produced by filters with different spatial frequency, orientation-finding
analogous to that in biological vision, and finally the use of image-parsing
trajectories to control spatial-error distribution. These measurements of
distortion are performed at the pixel level. From these pixel-level distortions,
one can then construct a single number for the entire image for each
particular type of distortion. Since there are eight metrics, therefore there will
be eight of these numbers. It is evident that such an approach is more
comprehensive than simply using the PSNR. We are exploring how we can
intelligently combine these numbers to construct a single overall number
that can replace the PSNR, while being more meaningful than the PSNR or
the weighted mean-square error (WMSE). We are currently working on this
task, and we believe that these metrics will be indispensable tools for us to
gauge our progress, as well as that of our colleagues in the compression
community.



Compression of the MICOM "Tank" Video

We have been working with the U.S. Army Missile Command Center
(MICOM) to assist in the image-compression part of the "Takeall" project,
whose aim is automated target recognition with as little human assistance as
possible. Our goals are twofold. First, we want to demonstrate our technology
in real-world applications. Second, understanding that LDRD funding is only
seed money, we need to secure funding for the future.

The performance of image-compression technologies is often very image-
dependent; there is good reason to believe that there is no single compression
algorithm that can be effectively used on all images. The compression
technologies we have been working on, such as those described above, have
been aimed at processing high-resolution and color images; thus, we need to
adapt our current technologies as well as come up with new compression
techniques to compress the very low-resolution and grayscale images from
MICOM. MICOM also specifies that each image from the video sequence is
preferably compressed individually and independently, and thus the sort of
high-compression-ratio technology that uses frame-to-frame redundancy
such as the Motion Picture Experts Group one (MPEG) cannot be applied. We
have been given an IR image sequence of a moving tank containing 200
frames of 12-bit 40x56 pixel images. This extremely low-resolution and noisy
sequence represents a serious compression challenge. MICOM has already
accumulated a total of 21 different compression algorithms from industry,
universities, and other research institutes in order to evaluate these
algorithms for their needs. Currently, MICOM is aiming at a 10:1 compression
ratio with excellent image quality for these images. This apparently low
requirement is in fact hard to achieve, since the images are both small and
grayscale, meaning that easy-to-compress flat areas will be relatively small
and also meaning that one cannot take the shortcut of compressing some of
the color information with greater loss than some of the other color
information. This is because a common shortcut in color-image compression
is to compress the chroma (hue + saturation) with greater loss than the
intensity, because our eyes have more sensitivity to changes in the latter than
in the former.

Though our current compression technologies do yield reasonable results
when applied to the "tank" sequence of images from MICOM, we believe that
they are not appropriate for this class of images. One possible direction is to
take a totally different approach to compression — instead of traditional
transform-based processing such as JPEG or our proposed human-perception-
based processing, as we have successfully demonstrated for compressing high-
resolution images, we view compression as a modeling process or problem.
Let us take a simple example — a circle. It will not be very efficiently
compressed with JPEG and it will be more efficiently compressed with our
feature-based compression algorithms. However, if we look at the circle as
something to model, then one can easily conclude that the most efficient
method is to describe the circle by the following equation.



(X-%0)? + (Y-¥0)? = R2

Then, not only can we describe the image by using three numbers, Xg, Yo, and
R; but we can also describe many different circles by using different values for
these three numbers.

However, exact and simple closed-form mathematical modeling is very
unlikely for real-life images, since they are far more complex than could be
described by such a compact analytical model. The next best thing is to use
empirical modeling, an area we have had experience and success in, one
example being modeling such complicated phenomena as plasma processing
using artificial neural networks (NN). The advanced nonlinear modeling
capabilities of artificial neural networks are essential for modeling complex
behavior, such as that of an image. This modeling approach represents a very
different paradigm for looking at the process of compression.

JPEG vs. Neural Network based Compression for the "Tank™ Sequence

One characteristic of images is that the information in adjacent pixels is
usually similar in value. Block-based techniques, such as JPEG, attempt to
exploit this property. In a block-based technique, the image is described by
blocks which contain some small number of pixels, i.e., 8*8 pixel blocks.
Though grouping into blocks is not a compression technique by itself, it is a
useful starting point for the real work of compression. In JPEG, each of these
8*8 blocks is further processed with a Discrete Cosine Transform (DCT) in
both dimensions, and is quantized by dividing each transformed value by
some quantization coefficient that is a function of position in the transform
and rounding to the nearest integer. The lossiness of JPEG is a result of
guantization. Further compression is achieved through lossless techniques
such as differential coding, run-length encoding (RLE) and Huffman
encoding.

Although JPEG provides moderate compression, neural-network
approaches using either nonlinear or linear processing elements may
outperform it, because of the linear nature of the underlying DCT. That is
because JPEG tries to exploit intra-block correlations found by re-mapping the
image into the DCT domain. Again the underlying problem can be expressed
as a sort of a data-modeling problem. The basic assumption is that the
dimension of the space in which the image blocks live in is lower than the
dimension of the space in which they are originally represented. For example,
consider a block-based image representation where each block is 8x8 pixels.
The image is now described by a collection of points living in a 64-
dimensional space, with each point representing a 8x8 block, and thus all the
blocks live in a 64-dimensional space. However, it will probably be the case
that the set of these points will not cover the entire space. What is needed is a
transformation that maps these points into another space where some of the
dimensions do not require so much resolution in order to perform an



adequate reconstruction. JPEG uses DCT for such a transformation or
mapping. Neural networks with nonlinear processing elements include the
space of linear transforms. (It has been shown that a network with linear
hidden units theoretically performs a principal components analysis (PCA),
However, a PCA will usually return the solution in more ordered form.)
With a nonlinear transform, however, it may be possible to describe the space
using fewer dimensions than a linear transform. In addition, standard JPEG
does not directly exploit block-to-block or inter-block redundancy, whereas a
neural-network approach can exploit both inter- and intra-block redundancy,
and thus may achieve higher efficiency, as least in certain classes of images.

Our Neural-Network Approach

In our recent work, we have used this block-based approach with auto-
associative neural networks for image compression. An auto-associative
neural network generates both the forward transformation and the inverse
transformation from a given space into another space learned by the network.
Compression is obtained and controlled by the dimension of the intermediate
space (the number of hidden units in the intermediate layer) and the levels of
guantization of the activations of this hidden layer. In this approach, the
image is coded as the combination of the points in the new lower-
dimensional space and the inverse transform (which consists of the weights
and network architecture between the intermediate layer and output layer.)
However, although the inverse transform can be considered overhead, its
impact can be lessened by transmitting once for multiple frames. To
accomplish this, the transform must be learned over multiple frames. The
consequences of the latency imposed by this approach is dependent on the
application.
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Figure 4 - Block based image representation with an auto-associative neural
network for compression. The network architecture and weights between the
intermediate (middle) layer and output layers are transmitted along with the
activities of the intermediate layer.

Using the NN method described, we have obtained the following results
on a series of IR images involving a tank shown in Table 2. The image



sequence contains 200 frames of 12-bit 40x56 pixel images. In each of the
experiments, the networks were trained on the first 50 of 200 frames. Sample
images obtained for networks at each of the compression rates follow in
Figures 5-9. In each of these figures, the original, the neural-network
reconstruction, and the difference image are displayed. A difference image is
obtained by subtracting the reconstruction from the original and re-scaling the
maximum and minimum values to fit between 0 and 255 (which actually
magnifies the differences). These difference images provide a much more
sensitive test for evaluating the compression results, since we only
concentrate on the differences without interference from other things, and
the magnification of these differences emphasize any minute artifacts. From a
subjective point of view, we have observed that for this set of images, the
compression technigue is more sensitive to the number of hidden units than
to the quantization level of the hidden-unit activation-output level. This is
illustrated by analyzing the degradation in image quality between Figures 5, 7
and 8. Please note that the compression ratios reported here represent
conservative estimates because other compression techniques (such as RLE
and Huffman encoding ) have not been used in conjunction with our neural
network approach to further enhance the compression.

These results have been reported in a meeting at MICOM with attendance
from personnel from both the compression group and the automatic-target-
recognition (ATR) group. They are very pleased with our results for the
"tank" sequence and they commented that our results for this particular
image sequence is better than any of the algorithms they have evaluated. Our
demonstrated compression ratio at ~18:1 for the tank images (Figure 9) is 80%
better than their targeted 10:1 compression ratio. We are planning to continue
working with MICOM on some more image sequences.

Table 2: NN Compression of Tank Sequence

NN Hidden Units Quantization Compression
20 8 4.63:1 (Figure 5)
10 12 6.25:1 (Figure 6)
8 8 9.26:1 (Figure 7)
10 8 11.58:1 (Figure 8)
10 4 17.89:1 (Figure 9)
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Figure 5 - Neural network compression at 4.63:1
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Figure 6 - Neural network compression at 6.25:1
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Figure 7 - Neural network compression at 9.26:1
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Figure 8 - Neural network compression at 11.58:1

13



Original Reconstructed

Difference

Figure 9 - Neural network compression at 17:89:1

CONCLUSION

We have finished an enhanced version of some feature-detection and -
representation algorithms resulting in a significant improvement (factors of 2
to 10) over our old method. To obtain detailed and objective evaluation of
compressed/decompressed images, we have outlined an approach, taking
into the account of human visual perception, of developing a set of picture-
guality metrics for such an evaluation. We have also begun working closely
with MICOM. Our neural-network-based compression technique performed
on the tank sequence from MICOM has yielded promising results. These
results have been reported in a meeting at MICOM with attendance from
personnel from both the compression group and the automatic-target-
recognition group. They are very pleased with our progress in the "tank"
sequence. The MICOM associative director has sent a letter to our deputy
associative director, Dr. Milton Finger, at our Laboratory, commending the
positive results of our project.



